Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

Towards a Smart Drone Cinematographer for Filming Human Motion

Abstract

Affordable consumer drones have made capturing aerial footage more convenient and accessible. However, shooting cinematic motion videos using a drone is challenging because it requires users to analyze dynamic scenarios while operating the controller.

In this thesis, our task is to develop an autonomous drone cinematography system to capture cinematic videos of human motion. We understand the system's filming performance to be influenced by three key components: 1) video quality metric, which measures the aesthetic quality -- the angle, the distance, the image composition -- of the captured video, 2) visual feature, which encapsulates the visual elements that influence the filming style, and 3) camera planning, which is a decision-making model that predicts the next best movement. By analyzing these three components, we designed two autonomous drone cinematography systems using both heuristic-based methods and learning-based methods.

For the first system, we designed an Autonomous CinemaTography system -- "ACT" by proposing a viewpoint quality metric focusing on the visibility of the 3D human skeleton of the subject. We expanded the application of human motion analysis and simplified manual control by assisting viewpoint selection using a through-the-lens method. For the second system, we designed an imitation-based system that learns the artistic intention of the cameramen through watching professional aerial videos. We designed a camera planner that analyzes the video contents and previous camera motion to predict future camera motion. Furthermore, we propose a planning framework, which can imitate a filming style by ``seeing" only one single demonstration video of such style. We named it ``one-shot imitation filming." To the best of our knowledge, this is the first work that extends imitation learning to autonomous filming. Experimental results in both simulation and field test exhibit significant improvements over existing techniques and our approach managed to help inexperienced pilots capture cinematic videos.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View