The capacity of hybrid quantum memory
Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

The capacity of hybrid quantum memory

Published Web Location

https://arxiv.org/pdf/quant-ph/0203105.pdf
No data is associated with this publication.
Abstract

The general stable quantum memory unit is a hybrid consisting of a classical digit with a quantum digit (qudit) assigned to each classical state. The shape of the memory is the vector of sizes of these qudits, which may differ. We determine when N copies of a quantum memory A embed in N(1+o(1)) copies of another quantum memory B. This relationship captures the notion that B is as at least as useful as A for all purposes in the bulk limit. We show that the embeddings exist if and only if for all p >= 1, the p-norm of the shape of A does not exceed the p-norm of the shape of B. The log of the p-norm of the shape of A can be interpreted as the maximum of S(\rho) + H(\rho)/p (quantum entropy plus discounted classical entropy) taken over all mixed states \rho on A. We also establish a noiseless coding theorem that justifies these entropies. The noiseless coding theorem and the bulk embedding theorem together say that either A blindly bulk-encodes into B with perfect fidelity, or A admits a state that does not visibly bulk-encode into B with high fidelity. In conclusion, the utility of a hybrid quantum memory is determined by its simultaneous capacity for classical and quantum entropy, which is not a finite list of numbers, but rather a convex region in the classical-quantum entropy plane.

Item not freely available? Link broken?
Report a problem accessing this item