- Main
Polyaniline nanofiber based surface acoustic wave gas sensors - Effect of nanofiber diameter on H-2 response
Abstract
A template-free rapidly mixed reaction was employed to synthesize polyaniline nanofibers using chemical oxidative polymerization of aniline. Hydrochloric acid (HCl) and camphor sulfonic acid (CSA) were used in the synthesis to obtain 30- and 50-nm average diameter polyaniline nanofibers. The nanofibers were deposited onto layered ZnO/64 degrees YX LiNbO3 surface-acoustic-wave transducers. The sensors were tested toward hydrogen (H-2) gas while operating at room temperature. The dopant for the polyaniline nanofiber synthesis was found to have a significant effect on the device sensitivity. The sensor response was found to be larger for the 50-nmdiameter CSA-doped nanofiber based sensors, while the response and recovery times were faster for the 30-nm diameter HCl-doped nanofibers.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-