Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Plantain hybrids for the humid forest agroecology of Central Africa – diseases and pests load, fruit yield and farmers perception

Abstract

Plantain is one of the major staples contributing to food security and income generation in West and Central Africa. Local cultivars in Cameroon are susceptible to pests and diseases causing severe losses in plantain production. This study aimed at evaluating the agronomic performance and producer’s perception of plantain hybrids in the humid forest of Cameroon. Field trials were established in a completely randomized block design with eight genotypes and three replicates. Data on pest and disease as well as farmer perception were collected over two growing cycles. These genotypes included seven improved and one local genotype (check). Improved genotypes were highly tolerant to the Black Sigatoka disease compared to local plantain. While root necrosis index was above 50% in local varieties, indices below 25% were recorded in hybrids. Weevil severity in local was higher (55.0 ± 5.2%) compared to 21.0 ± 4.6% to 28.5 ± 3.2% in improved plantains. Average bunch weight was higher for FHIA 21 with 17.9 ± 0.7 kg in the first and 19.7 ± 0.3 kg for the second cycle, while those of the local Ebang were 9.6 ± 0.5 kg and 12.8 ± 0.9 kg, respectively. FHIA 21 and CRBP 568 were the preferred varieties by farmers (68.8% and 56.3% acceptance) from an agronomic perspective. The consumers’ preferences for all the genotypes varied with types of cooking. The implications of these findings for adoption by farmers and consumers as well as for the promotion of the plantain sector in central Africa are discussed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View