Skip to main content
Download PDF
- Main
Absolute continuity of the periodic Schrödinger operator in transversal geometry
Published Web Location
https://doi.org/10.4171/jems/673Abstract
We show that the spectrum of a Schr\"odinger operator on $\mathbb{R}^n$, $n\ge 3$, with a periodic smooth Riemannian metric, whose conformal multiple has a product structure with one Euclidean direction, and with a periodic electric potential in $L^{n/2}_{\text{loc}}(\mathbb{R}^n)$, is purely absolutely continuous. Previously known results in the case of a general metric are obtained in [12], see also [8], under the assumption that the metric, as well as the potential, are reflection symmetric.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%