Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Indexing spatio-temporal trajectories with efficient polynomial approximations

Abstract

Complex queries on trajectory data are increasingly common in applications involving moving objects. MBR or grid-cell approximations on trajectories perform suboptimally since they do not capture the smoothness and lack of internal area of trajectories. We describe a parametric space indexing method for historical trajectory data, approximating a sequence of movement functions with single continuous polynomial. Our approach works well, yielding much finer approximation quality than MBRs. We present the PA-tree, a parametric index that uses this method, and show through extensive experiments that PA-trees have excellent performance for offline and online spatio-temporal range queries. Compared to MVR-trees, PA-trees are an order of magnitude faster to construct and incur I/O cost for spatio-temporal range queries lower by a factor of 2-4. SETI is faster than our method for index construction and timestamp queries, but incurs twice the I/O cost for time interval queries, which are much more expensive and are the bottleneck in online processing. Therefore, the PA-tree is an excellent choice for both offline and online processing of historical trajectories.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View