Skip to main content
eScholarship
Open Access Publications from the University of California

Imitation, Evolution and Cooperation

No data is associated with this publication.
Abstract

This note characterizes the impact of adding rare stochastic mutations to an .imitation dynamic,” meaning a process with the properties that any state where all agents use the same strategy is absorbing, and all other states are transient. The work of Freidlin and Wentzell [10] and its extensions implies that the resulting system will spend almost all of its time at the absorbing states of the no-mutation process, and provides a general algorithm for calculating the limit distribution, but this algorithm can be complicated to apply. This note provides a simpler and more intuitive algorithm. Loosely speaking, in a process with K strategies, it is sufficient to .find the invariant distribution of a K x K Markov matrix on the K homogeneous states, where the probability of a transit from "all play i" to "all play j" is the probability of a transition from the state "all agents but 1 play i, 1 plays j" to the state "all play j."



The text for this item is currently unavailable.