Imitation, Evolution and Cooperation
Abstract
This note characterizes the impact of adding rare stochastic mutations to an .imitation dynamic,” meaning a process with the properties that any state where all agents use the same strategy is absorbing, and all other states are transient. The work of Freidlin and Wentzell [10] and its extensions implies that the resulting system will spend almost all of its time at the absorbing states of the no-mutation process, and provides a general algorithm for calculating the limit distribution, but this algorithm can be complicated to apply. This note provides a simpler and more intuitive algorithm. Loosely speaking, in a process with K strategies, it is sufficient to .find the invariant distribution of a K x K Markov matrix on the K homogeneous states, where the probability of a transit from "all play i" to "all play j" is the probability of a transition from the state "all agents but 1 play i, 1 plays j" to the state "all play j."
The text for this item is currently unavailable.