Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Slow [Na]i Changes and Positive Feedback Between Membrane Potential and [Ca]i Underlie Intermittent Early Afterdepolarizations and Arrhythmias

Published Web Location

http://circep.ahajournals.org/content/8/6/1472.long
No data is associated with this publication.
Abstract

Background

Most cardiac arrhythmias occur intermittently. As a cellular precursor of lethal cardiac arrhythmias, early afterdepolarizations (EADs) during action potentials(APs) have been extensively investigated, and mechanisms for the occurrence of EADs on a beat-to-beat basis have been proposed. However, no previous study explains slow fluctuations in EADs, which may underlie intermittency of EAD trains and consequent arrhythmias. We hypothesize that the feedback of intracellular calcium and sodium concentrations ([Na](i) and [Ca](i)) that influence membrane voltage (V) can explain EAD intermittency.

Methods and results

AP recordings in rabbit ventricular myocytes revealed intermittent EADs, with slow fluctuations between runs of APs with EADs present or absent. We then used dynamical systems analysis and detailed mathematical models of rabbit ventricular myocytes that replicate the observed behavior and investigated the underlying mechanism. We found that a dominance of inward Na-Ca exchanger current (I(NCX)) over Ca-dependent inactivation of L-type Ca current (I(CaL)) forms a positive feedback between [Ca](i) and V, thus resulting in 2 stable AP states, with and without EADs (ie, bistability). Slow changes in [Na](i) determine the transition between these 2 states, forming a bistable on-off switch of EADs. Tissue simulations showed that this bistable switch of cellular EADs provided both a trigger and a functional substrate for intermittent arrhythmias in homogeneous tissues.

Conclusions

Our study demonstrates that the interaction among V, [Ca](i), and [Na](i) causes slow on-off switching (or bistability) of AP duration in cardiac myocytes and EAD-mediated arrhythmias and suggests a novel possible mechanism for intermittency of cardiac arrhythmias.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item