Skip to main content
Download PDF
- Main
Determining a magnetic Schrödinger operator with a continuous magnetic potential from boundary measurements
Abstract
We show that the knowledge of the set of the Cauchy data on the boundary of a $C^1$ bounded open set in $\R^n$, $n\ge 3$, for the Schr\"odinger operator with continuous magnetic and bounded electric potentials determines the magnetic field and electric potential inside the set uniquely. The proof is based on a Carleman estimate for the magnetic Schr\"odinger operator with a gain of two derivatives.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%