A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral Effector Perception
Published Web Location
https://www.ncbi.nlm.nih.gov/pubmed/30639751Abstract
Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw-5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NB-ARC-LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm21 levels are high. Interestingly, Sw-5b SD could significantly enhance the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm21. Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recognition mechanism to enhance viral effector perception.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.