- Main
System-level modeling with temperature compensation for a CMOS-MEMS monolithic calorimetric flow sensing SoC.
Published Web Location
https://doi.org/10.1038/s41378-024-00853-8Abstract
We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC. The model encompasses mechanical, thermal, and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA platform. The compensation strategy is implemented on-chip with a variable temperature difference heating circuit. Results show that the linear programming for the low-temperature drift in the SoC output is characterized by a compensation resistor Rc with a resistance value of 748.21 Ω and a temperature coefficient of resistance of 3.037 × 10-3 °C-1 at 25 °C. Experimental validation demonstrates that within an ambient temperature range of 0-50 °C and a flow range of 0-10 m/s, the temperature drift of the sensor is reduced to ±1.6%, as compared to ±8.9% observed in a counterpart with the constant temperature difference circuit. Therefore, this on-chip temperature-compensated CMOS-MEMS flow sensing SoC is promising for low-cost sensing applications such as respiratory monitoring and smart energy-efficient buildings.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-