Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Long-form recording of infant body position in the home using wearable inertial sensors

Published Web Location

https://padlab.ucr.edu/publications/2024-FranchakTangRouseyLuo-BRM.pdf
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Long-form audio recordings have had a transformational effect on the study of infant language acquisition by using mobile, unobtrusive devices to gather full-day, real-time data that can be automatically scored. How can we produce similar data in service of measuring infants' everyday motor behaviors, such as body position? The aim of the current study was to validate long-form recordings of infant position (supine, prone, sitting, upright, held by caregiver) based on machine learning classification of data from inertial sensors worn on infants' ankles and thighs. Using over 100 h of video recordings synchronized with inertial sensor data from infants in their homes, we demonstrate that body position classifications are sufficiently accurate to measure infant behavior. Moreover, classification remained accurate when predicting behavior later in the session when infants and caregivers were unsupervised and went about their normal activities, showing that the method can handle the challenge of measuring unconstrained, natural activity. Next, we show that the inertial sensing method has convergent validity by replicating age differences in body position found using other methods with full-day data captured from inertial sensors. We end the paper with a discussion of the novel opportunities that long-form motor recordings afford for understanding infant learning and development.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item