Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Contrast timing optimization of a two-volume dynamic CT pulmonary perfusion technique

Abstract

The purpose of this study is to develop and validate an optimal timing protocol for a low-radiation-dose CT pulmonary perfusion technique using only two volume scans. A total of 24 swine (48.5 ± 14.3 kg) underwent contrast-enhanced dynamic CT. Multiple contrast injections were made under different pulmonary perfusion conditions, resulting in a total of 141 complete pulmonary arterial input functions (AIFs). Using all the AIF curves, an optimal contrast timing protocol was developed for a first-pass, two-volume dynamic CT perfusion technique (one at the base and the other at the peak of AIF curve). A subset of swine was used to validate the prospective two-volume pulmonary perfusion technique. The prospective two-volume perfusion measurements were quantitatively compared to the previously validated retrospective perfusion measurements with t-test, linear regression, and Bland-Altman analysis. As a result, the pulmonary artery time-to-peak ([Formula: see text]) was related to one-half of the contrast injection duration ([Formula: see text]) by [Formula: see text] (r = 0.95). The prospective two-volume perfusion measurements (PPRO) were related to the retrospective measurements (PRETRO) by PPRO = 0.87PRETRO + 0.56 (r = 0.88). The CT dose index and size-specific dose estimate of the two-volume CT technique were estimated to be 28.4 and 47.0 mGy, respectively. The optimal timing protocol can enable an accurate, low-radiation-dose two-volume dynamic CT perfusion technique.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View