Evolution of the Earth Microbial Co-occurrence Network
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Evolution of the Earth Microbial Co-occurrence Network

Published Web Location

https://www.researchsquare.com/article/rs-604225/v1
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract: Background: Co-occurrence pattern provides vital insight into complex microbial interactions of microbiomes. Although network analysis offers useful tools for describing microbial co-occurrence pattern, evolution of co-occurrence networks remains largely uncharacterized. Here, we simulated the evolution of the Earth microbial co-occurrence network and estimated topological fitness of its nodes based on the degree growth exponent.Results: We showed that the Earth microbial co-occurrence network evolved following Bianconi-Barabasi model. The Earth microbial co-occurrence network had reached to a stable status with around 500 nodes. Degree growth exponent was the major determinant of accumulated degree of taxa. The positive correlation between topological fitness and gene numbers in corresponding genomes suggests the intrinsic feature of topological fitness. The gamma distribution of topological fitness suggests the extinction of taxa with low topological fitness. We then examined the impact of node extinction and decay, finding that the link acquisition of hub nodes was not affected.Conclusions: This study glimpses the evolution feature of Earth microbial co-occurrence network and provides a framework for predicting potential hubs in the evolving network in future.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item