- Main
Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts
Published Web Location
https://doi.org/10.1016/j.yjmcc.2014.10.011Abstract
Abnormal intracellular Ca(2+) cycling plays a key role in cardiac dysfunction, particularly during the setting of ischemia/reperfusion (I/R). During ischemia, there is an increase in cytosolic and sarcoplasmic reticulum (SR) Ca(2+). At the onset of reperfusion, there is a transient and abrupt increase in cytosolic Ca(2++), which occurs timely associated with reperfusion arrhythmias. However, little is known about the subcellular dynamics of Ca(2+) increase during I/R, and a possible role of the SR as a mechanism underlying this increase has been previously overlooked. The aim of the present work is to test two main hypotheses: (1) An increase diastolic Ca(2+) sparks frequency (cspf) constitutes a mayor substrate for the ischemia-induced diastolic Ca(2+) increase; (2) an increase in cytosolic Ca(2+) pro-arrhythmogenic events (Ca(2+) waves), mediates the abrupt diastolic Ca(2+) rise at the onset of reperfusion. We used confocal microscopy on mouse intact hearts loaded with Fluo-4. Hearts were submitted to global I/R (12/30 min) to assess epicardial Ca(2+) sparks in the whole heart. Intact heart sparks were faster than in isolated myocytes whereas cspf was not different. During ischemia, cspf significantly increased relative to preischemia (2.07±0.33 vs. 1.13±0.20 sp/s/100 μm, n=29/34, 7 hearts). Reperfusion significantly changed Ca(2+) sparks kinetics, by prolonging Ca(2+) sparks rise time and decreased cspf. However, it significantly increased Ca(2+) wave frequency relative to ischemia (0.71±0.14 vs. 0.38±0.06 w/s/100 μm, n=32/33, 7 hearts). The results show for the first time the assessment of intact perfused heart Ca(2+) sparks and provides direct evidence of increased Ca(2+) sparks in ischemia that transform into Ca(2+) waves during reperfusion. These waves may constitute a main trigger for reperfusion arrhythmias.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-