Kohn-Sham Density Functional Theory with Complex, Spin-Restricted Orbitals: Accessing a New Class of Densities without the Symmetry Dilemma
Published Web Location
https://arxiv.org/pdf/1904.08093.pdfAbstract
We show that using complex, spin-restricted orbitals in Kohn-Sham (KS) density functional theory allows one to access a new class of densities that is not accessible by either spin-restricted (RKS) or spin-unrestricted (UKS) orbitals. We further show that the real part of a complex RKS (CRKS) density matrix can be nonidempotent when the imaginary part of the density matrix is not zero. Using CRKS orbitals shows significant improvements in the triplet-singlet gaps of a benchmark set, called TS12, for well-established, widely used density functionals. Moreover, it was shown that RKS and UKS yield qualitatively wrong charge densities and spin densities, respectively, leading to worse energetics. We demonstrate that representative modern density functionals show surprisingly no improvement even with a qualitatively more accurate density from CRKS orbitals. To this end, our work not only provides a way to escape the symmetry dilemma whenever there exists a CRKS solution, but also suggests a new route to design better approximate density functionals.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.