Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Surface Effects on Anisotropic Photoluminescence in One‐Dimensional Organic Metal Halide Hybrids

Published Web Location

https://arxiv.org/abs/2212.07394
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

1D organic metal halide hybrids (OMHHs) exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promise for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Herein, 1D C4N2H14PbBr4 by polarization-dependent time-averaged and time-resolved photoluminescence (TRPL) spectroscopy, as a function of photoexcitation energy, is investigated. Surprisingly, it is found that the emission under photoexcitation polarized parallel to the 1D metal halide chains can be either stronger or weaker than that under perpendicular polarization, depending on the excitation energy. The excitation-energy-dependent anisotropic emission is attributed to fast surface recombination, supported by first-principles calculations of optical absorption in this material. The fast surface recombination is directly confirmed by TRPL measurements, when the excitation is polarized parallel to the chains. The comprehensive studies provide a more complete picture for a deeper understanding of the optical anisotropy in 1D OMHHs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item