Skip to main content
eScholarship
Open Access Publications from the University of California

Thermodynamic parameters are sequence-dependent for the supercoil-induced B to Z transition in recombinant plasmids.

Published Web Location

https://www.sciencedirect.com/science/article/pii/S0021925818693044?via%3Dihub
No data is associated with this publication.
Abstract

The entropy and enthalpy changes which contribute to the thermodynamics of the B to Z transition were determined for three recombinant plasmids containing a (dC-dG)16 tract and for a plasmid containing a pair of (dT-dG)20 regions. For each base pair which adopts a left-handed conformation in the plasmids with (dC-dG)16 sequences, the delta HBZ and delta SBZ are -2.1 kcal/mol bp and -8.8 cal/K-mol bp, respectively. In the plasmid containing the (dT-dG)20 tracts, however, the delta HBZ and delta SBZ values are 0.58 kcal/mol bp and -0.76 cal/K-mol bp, respectively. Also, these determinations show that for each B-Z junction that forms in the plasmids containing the (dC-dG), the enthalpy and entropy changes are 24 kcal/mol junction and 65 cal/K-mol junction, whereas for the (dT-dG) plasmid, the enthalpy and entropy changes are -1.8 kcal/mol junction and -22 cal/K-mol junction, respectively. Those values for the enthalpy and entropy changes for the formation of a BZ junction in (dC-dG) and (dT-dG) plasmids suggest that the properties and possibly the structures of the junctions are different. Calculations using the enthalpy and entropy changes determined in this study reveal that the B to Z transition in plasmids containing (dC-dG) blocks are more temperature-dependent than the transitions in plasmids with (dT-dG) blocks. Surprisingly, at temperatures above 60 degrees C, calculations indicate that the B to Z transitions in (dT-dG) plasmids should be energetically favored over that transition in (dC-dG) plasmids.

Item not freely available? Link broken?
Report a problem accessing this item