- Huang, Ruyi;
- Nikooyan, Ali A;
- Xu, Bo;
- Joseph, M Selvan;
- Damavandi, Hamidreza Ghasemi;
- von Trotha, Nathan;
- Li, Lilian;
- Bhattarai, Ashok;
- Zadeh, Deeba;
- Seo, Yeji;
- Liu, Xingquan;
- Truong, Patrick A;
- Koo, Edward H;
- Leiter, JC;
- Lu, Daniel C
Motor deficits are observed in Alzheimer's disease (AD) prior to the appearance of cognitive symptoms. To investigate the role of amyloid proteins in gait disturbances, we characterized locomotion in APP-overexpressing transgenic J20 mice. We used three-dimensional motion capture to characterize quadrupedal locomotion on a treadmill in J20 and wild-type mice. Sixteen J20 mice and fifteen wild-type mice were studied at two ages (4- and 13-month). A random forest (RF) classification algorithm discriminated between the genotypes within each age group using a leave-one-out cross-validation. The balanced accuracy of the RF classification was 92.3 ± 5.2% and 93.3 ± 4.5% as well as False Negative Rate (FNR) of 0.0 ± 0.0% and 0.0 ± 0.0% for the 4-month and 13-month groups, respectively. Feature ranking algorithms identified kinematic features that when considered simultaneously, achieved high genotype classification accuracy. The identified features demonstrated an age-specific kinematic profile of the impact of APP-overexpression. Trunk tilt and unstable hip movement patterns were important in classifying the 4-month J20 mice, whereas patterns of shoulder and iliac crest movement were critical for classifying 13-month J20 mice. Examining multiple kinematic features of gait simultaneously could also be developed to classify motor disorders in humans.