- Shikany, James;
- Demmer, Ryan;
- Johnson, Abigail;
- Fino, Nora;
- Meyer, Katie;
- Ensrud, Kristine;
- Zmuda, Joseph;
- Langsetmo, Lisa;
- Orwoll, Eric;
- Kado, Deborah;
- Lane, Nancy
BACKGROUND: While the gut microbiota is relatively stable through adulthood, its composition is influenced by various host and environmental factors, including changes in health, gastrointestinal processes (e.g., transit time, gastric acidity), medication use, and diet. The association of habitual diet, in the form of a posteriori-derived dietary patterns, and microbiota composition has not been adequately studied, particularly in older men. OBJECTIVE: The objective was to investigate the association of dietary patterns with the composition and diversity of the gut bacterial microbiota in community-dwelling, older men. METHODS: This cross-sectional study included 517 men who were participants in the Osteoporotic Fractures in Men (MrOS) Study (≥65 y of age at baseline in 2000-2002) and who provided a stool sample and completed an FFQ at MrOS Visit 4 in 2014-2016. Dietary patterns were derived by factor analysis. 16S ribosomal RNA target gene sequencing was performed and taxonomy assignments were derived using the Greengenes database. Linear regression and permutational multivariate analysis of variance (PERMANOVA) considered variations in alpha and beta diversity by dietary pattern, and a model that implements a 0-inflated Gaussian distribution of mean group abundance for each taxa (metagenomeSeq) assessed taxonomic variations by dietary pattern. RESULTS: In multivariable-adjusted models, greater adherence to the Western pattern was positively associated with families Mogibacteriaceae and Veillonellaceae and genera Alistipes, Anaerotruncus, CC-115, Collinsella, Coprobacillus, Desulfovibrio, Dorea, Eubacterium, and Ruminococcus, while greater adherence to the prudent pattern was positively associated with order Streptophyta, family Victivallaceae, and genera Cetobacterium, Clostridium, Faecalibacterium, Lachnospira, Paraprevotella, and Veillonella. The relative abundance of the dominant gut bacterial phyla, Bacteroidetes and Firmicutes, did not differ between participants with greater adherence to the Western pattern, compared with those with greater adherence to the prudent pattern. Dietary patterns were not associated with measures of alpha diversity, but beta diversity measures were significantly associated with both Western and prudent patterns. CONCLUSIONS: We observed significant associations between dietary patterns and measures of gut microbial composition in this sample of community-dwelling, older men.