- Zhao, Wennan;
- Wang, Xue;
- Han, Lifeng;
- Zhang, Chunze;
- Wang, Chenxi;
- Kong, Dexin;
- Zhang, Mingzhe;
- Xu, Tong;
- Li, Gen;
- Hu, Ge;
- Luo, Jiahua;
- Yee, Sook Wah;
- Yang, Jia;
- Stahl, Andreas;
- Chen, Xin;
- Zhang, Youcai
Activated Wnt/β-catenin pathway is a key genetic event in liver cancer development. Solute carrier (SLC) transporters are promising drug targets. Here, we identify SLC13A3 as a drug-targetable effector downstream of β-catenin in liver cancer. SLC13A3 expression is elevated in human liver cancer samples with gain of function (GOF) mutant CTNNB1, the gene encoding β-catenin. Activation of β-catenin up-regulates SLC13A3, leading to intracellular accumulation of endogenous SLC13A3 substrates. SLC13A3 is identified as a low-affinity transporter for glutathione (GSH). Silencing of SLC13A3 downregulates the leucine transporter SLC7A5 via c-MYC signaling, leading to leucine depletion and mTOR inactivation. Furthermore, silencing of SLC13A3 depletes GSH and induces autophagic ferroptosis in β-catenin-activated liver cancer cells. Importantly, both genetic inhibition of SLC13A3 and a small molecule SLC13A3 inhibitor suppress β-catenin-driven hepatocarcinogenesis in mice. Altogether, our study suggests that SLC13A3 could be a promising therapeutic target for treating human liver cancers with GOF CTNNB1 mutations.