Accurate real time crime prediction is a fundamental issue for public safety,
but remains a challenging problem for the scientific community. Crime
occurrences depend on many complex factors. Compared to many predictable
events, crime is sparse. At different spatio-temporal scales, crime
distributions display dramatically different patterns. These distributions are
of very low regularity in both space and time. In this work, we adapt the
state-of-the-art deep learning spatio-temporal predictor, ST-ResNet [Zhang et
al, AAAI, 2017], to collectively predict crime distribution over the Los
Angeles area. Our models are two staged. First, we preprocess the raw crime
data. This includes regularization in both space and time to enhance
predictable signals. Second, we adapt hierarchical structures of residual
convolutional units to train multi-factor crime prediction models. Experiments
over a half year period in Los Angeles reveal highly accurate predictive power
of our models.