- Zhang, Amy L;
- Balmes, John R;
- Lutzker, Liza;
- Mann, Jennifer K;
- Margolis, Helene G;
- Tyner, Tim;
- Holland, Nina;
- Noth, Elizabeth M;
- Lurmann, Fred;
- Hammond, S Katharine;
- Holm, Stephanie M
Background
Previous research has revealed links between air pollution exposure and metabolic syndrome in adults; however, these associations are less explored in children.Objective
This study aims to investigate the association between traffic-related air pollutants (TRAP) and biomarkers of metabolic dysregulation, oxidative stress, and lung epithelial damage in children.Methods
We conducted cross-sectional analyses in a sample of predominantly Latinx, low-income children (n = 218) to examine associations between air pollutants (nitrogen dioxide (NO2), nitrogen oxides (NOx), elemental carbon, polycyclic aromatic hydrocarbons, carbon monoxide (CO), fine particulates (PM2.5)) and biomarkers of metabolic function (high-density lipoprotein (HDL), hemoglobin A1c (HbA1c), oxidative stress (8-isoprostane), and lung epithelial damage (club cell protein 16 (CC16)).Results
HDL cholesterol showed an inverse association with NO2 and NOx, with the strongest relationship between HDL and 3-month exposure to NO2 (-15.4 mg/dL per IQR increase in 3-month NO2, 95% CI = -27.4, -3.4). 8-isoprostane showed a consistent pattern of increasing values with 1-day and 1-week exposure across all pollutants. Non-significant increases in % HbA1c were found during 1-month time frames and decreasing CC16 in 3-month exposure time frames.Conclusion
Our results suggest that TRAP is significantly associated with decreased HDL cholesterol in longer-term time frames and elevated 8-isoprostane in shorter-term time frames. TRAP could have the potential to influence lifelong metabolic patterns, through metabolic effects in childhood.