- Tassetto, Michel;
- Garcia-Knight, Miguel;
- Anglin, Khamal;
- Lu, Scott;
- Zhang, Amethyst;
- Romero, Mariela;
- Pineda-Ramirez, Jesus;
- Sanchez, Ruth Diaz;
- Donohue, Kevin C;
- Pfister, Karen;
- Chan, Curtis;
- Saydah, Sharon;
- Briggs-Hagen, Melissa;
- Peluso, Michael J;
- Martin, Jeffrey N;
- Andino, Raul;
- Midgley, Claire M;
- Kelly, J Daniel
Before emergence in late 2021 of the highly transmissible B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19 (1,2), several studies demonstrated that SARS-CoV-2 was unlikely to be cultured from specimens with high cycle threshold (Ct) values§ from real-time reverse transcription-polymerase chain reaction (RT-PCR) tests (suggesting low viral RNA levels) (3). Although CDC and others do not recommend attempting to correlate Ct values with the amount of infectious virus in the original specimen (4,5), low Ct values are sometimes used as surrogate markers for infectiousness in clinical, public health, or research settings without access to virus culture (5). However, the consistency in reliability of this practice across SARS-CoV-2 variants remains uncertain because Omicron-specific data on infectious virus shedding, including its relationship with RNA levels, are limited. In the current analysis, nasal specimens collected from an ongoing longitudinal cohort¶ (6,7) of nonhospitalized participants with positive SARS-CoV-2 test results living in the San Francisco Bay Area** were used to generate Ct values and assess for the presence of culturable SARS-CoV-2 virus; findings were compared between specimens from participants infected with pre-Omicron variants and those infected with the Omicron BA.1 sublineage. Among specimens with culturable virus detected, Ct values were higher (suggesting lower RNA levels) during Omicron BA.1 infections than during pre-Omicron infections, suggesting variant-specific differences in viral dynamics. Supporting CDC guidance, these data show that Ct values likely do not provide a consistent proxy for infectiousness across SARS-CoV-2 variants.