Tumor-targeted therapy based on nanoparticles is a popular research direction in the biomedical field. After decades of research and development, both the passive targeting ability of the inherent properties of NPs and the active targeting based on ligand receptor interaction have gained deeper understanding. Unfortunately, most targeted delivery strategies are still in the preclinical trial stage, so it is necessary to further study the biological fate of particles in vivo and the interaction mechanism with tumors. This article reviews different targeted delivery strategies based on NPs, and focuses on the physical and chemical properties of NPs (size, morphology, surface and intrinsic properties), ligands (binding number/force, activity and species) and receptors (endocytosis, distribution and recycling) and other factors that affect particle targeting. The limitations and solutions of these factors are further discussed, and a variety of new targeting schemes are introduced, hoping to provide guidance for future targeting design and achieve the purpose of rapid transformation of targeted particles into clinical application.