The reproductive growth and water productivity (WPb) of Thompson Seedless grapevines were measured as a function of applied water amounts at various fractions of measured grapevine ETc for a total of eight irrigation treatments. Shoots were harvested numerous times during the growing season to calculate water productivity. Berry weight was maximized at the 0.6–0.8 applied water treatments across years. As applied water amounts increased soluble solids decreased. Berry weight measured at veraison and harvest was a linear function of the mean midday leaf water potential measured between anthesis and veraison and anthesis and harvest, respectively. As applied water amounts increased up to the 0.6–0.8 irrigation treatments there was a significant linear increase in yield. Yields at greater applied water amounts either leveled off or decreased. The reduction in yield on either side of the yearly maximum was due to fewer numbers of clusters per vine. Maximum yield occurred at an ETc ranging from 550 to 700 mm. Yield per unit applied water and WPb increased as applied water decreased. The results from this study demonstrated that Thompson Seedless grapevines can be deficit irrigated, increasing water use efficiency while maximizing yields.