Implementation of extreme ultraviolet (EUV) lithography in high-volume semiconductor manufacturing requires a reliable and scalable EUV resist platform. A mechanistic understanding of the pros and cons of different EUV resist materials is critically important. However, most material characterization methods with nanometer resolution use an x-ray photon or electron beam as the probe, which often cause damage to the photoresist film during measurement. Here, we illustrated the use of non-destructive infrared nanospectroscopy [or nano-Fourier-Transform infrared spectroscopy (nano-FTIR)] to obtain spatially resolved composition information in patterned photoresist films. Clear evidence of exposure-induced chemical modification was observed at a spatial resolution down to 40 nm, well below the diffraction limit of infrared light. With improvements, such a nano-FTIR technique with nanoscale spatial resolution, chemical sensitivity, and minimal radiation damage can be a promising candidate for the fundamental study of material properties relevant to EUV lithography.