Fish use odor to avoid exposure to predation and disease. Harnessing these odors as repellents is proving useful for management initiatives that conserve native species or control invasive populations. Here, we evaluated the behavioral response of invasive sea lamprey to putrescine, a decay molecule that many prey organisms avoid. Putrescine is found in tissue extracts that contain sea lamprey alarm cue, and human saliva, two mixtures known to elicit flight and avoidance responses in migratory sea lamprey. We used two behavioral assays to evaluate metrics of repellency: behavioral preference (space use) and change in activity rates and found context-dependent results. In smaller assays with individual fish, we found that putrescine had no effect on sea lamprey activity but did induce avoidance. In larger assays with multiple animals, sea lamprey did not avoid putrescine. Our results also showed consistent changes in activity and avoidance behavior in sea lamprey exposed to alarm cue in the smaller assay, concluding that this design could prove useful as a high-throughput screening tool. We also investigated a novel odor identified in sea lamprey skin, petromyzonacil, and found no behavioral effects to this odor on its own or in synergy with putrescine. Our results show limited evidence that putrescine acts as robust repellent for sea lamprey and highlight the importance of environmental context when interpreting avoidance behavior in laboratory settings.