Introduction
Stingray envenomations are a common marine animal injury for which it is important to identify and remove retained barbs to prevent secondary infection. The optimal imaging modality in stingray foreign body detection is not well characterized in the existing literature. In this study, we compared the accuracy of plain radiography, ultrasound, and magnetic resonance imaging (MRI) in detecting stingray barbs in the human foot and ankle.Methods
This cadaveric study included a 1:1 randomization to the presence or absence of barbs in 24 sample injuries of human cadaveric foot and ankle specimens. Physicians trained in emergency medicine and radiology performed ultrasound examinations on each specimen and interpreted the presence or absence of a barb. Participants also interpreted x-ray images in the same manner. MRI scans were separately interpreted by a musculoskeletal radiology attending. Data were analyzed using McNemar's test.Results
The 19 participants included 14 (74%) trained in emergency medicine and 5 (26%) trained in radiology. Forty-seven percent were residents, 42% faculty, and 11% fellows. X-ray was associated with the highest sensitivity of 94% for the identification of a retained barb, followed by MRI (83%) and ultrasound (70%). MRI was associated with the highest specificity of 100%, followed by x-ray (98%) and ultrasound (73%).Conclusions
Retained stingray barbs can lead to secondary infection after envenomation. In human cadaveric specimens, x-ray demonstrated the highest sensitivity, MRI demonstrated the highest specificity, and ultrasound demonstrated lower sensitivity and specificity.