The posterior STS (pSTS) is an important brain region for perceptual analysis of social cognitive cues. This study seeks to characterize the pattern of network connectivity emerging from the pSTS in three core social perception localizers: biological motion perception, gaze recognition, and the interpretation of moving geometric shapes as animate. We identified brain regions associated with all three of these localizers and computed the functional connectivity pattern between them and the pSTS using a partial correlations metric that characterizes network connectivity. We find a core pattern of cortical connectivity that supports the hypothesis that the pSTS serves as a hub of the social brain network. The right pSTS was the most highly connected of the brain regions measured, with many long-range connections to pFC. Unlike other highly connected regions, connectivity to the pSTS was distinctly lateralized. We conclude that the functional importance of right pSTS is revealed when considering its role in the large-scale network of brain regions involved in various aspects of social cognition.