- Ngara, Bernard;
- Flori, Lorenzo;
- van Wijk, Rob Christiaan;
- Ernest, Jacqueline P;
- Tyagi, Sandeep;
- Soni, Heena;
- Hölscher, Christoph;
- Walter, Kerstin;
- Dreisbach, Julia;
- Hoelscher, Michael;
- Nuermberger, Eric L;
- Savic, Rada
Introduction
BTZ-043 is a promising novel drug candidate for anti-tuberculosis treatment. This study aimed to apply a previously developed mouse-to-human translational modeling platform for anti-tuberculosis drugs to predict phase IIA outcomes for BTZ-043 in humans and evaluate the impact of observed drug-drug interactions on the contribution of BTZ-043 to combotherapy in a mouse model.Methods
The study utilized data from mouse experiments for BTZ-043 monotherapy and combotherapy with bedaquiline, pretomanid, and linezolid, and clinical information for BTZ-043 monotherapy. The translational models were applied to predict the colony-forming units as a measure of efficacy in humans treated with BTZ-043 monotherapy and evaluate the effect of BTZ-043 on the pharmacokinetics-pharmacodynamics of combotherapy bedaquiline, pretomanid, and linezolid.Results
The mouse-pharmacokinetic and mouse-pharmacodynamic data for BTZ-043 monotherapy were best described by two-compartmental and direct Emax models, respectively. The model-based prediction of efficacy in humans was comparable to the observed phase IIA efficacy. Single-compartmental models, developed separately, best described the mouse-pharmacokinetic data for bedaquiline, pretomanid, and linezolid in combotherapy. Co-administration with BTZ-043 was associated with at least a 2-fold reduction in bedaquiline, pretomanid, and linezolid exposures in mice, and model-based simulations suggested that the observed decreases in exposure to these drugs would have resulted in even lower efficacy than what was observed when BPaL is co-administered with BTZ-043.Conclusion
The translational modeling platform adequately predicted the efficacy of BTZ-043 monotherapy. In the absence of drug-drug interactions, co-administration of BTZ-043 with bedaquiline, pretomanid, and linezolid in combotherapy is predicted to improve treatment efficacy.