1,2-Azaborines represent a unique class of benzene isosteres that have attracted interest for developing pharmaceuticals with better potency and bioavailability. However, it remains a long-standing challenge to prepare monocyclic 1,2-azaborines, particularly multi-substituted ones, in an efficient and modular manner. Here we report a straightforward method to directly access diverse multi-substituted 1,2-azaborines from readily available cyclopropyl imines/ketones and dibromoboranes under relatively mild conditions. The reaction is scalable, shows a broad substrate scope, and tolerates a range of functional groups. The utility of this method is demonstrated in the concise syntheses of BN isosteres of a PD-1/PD-L1 inhibitor and pyrethroid insecticide, bifenthrin. Combined experimental and computational mechanistic studies suggest that the reaction pathway involves boron-mediated cyclopropane ring-opening and base-mediated elimination, followed by an unusual low-barrier 6π-electrocyclization accelerated by the BN/CC isomerism. This method is anticipated to find applications for the synthesis of BN-isostere analogues in medicinal chemistry, and the mechanistic insights gained here may guide developing other boron-mediated electrocyclizations.