The AKT signalling pathway is a major regulator of protein synthesis that impinges on multiple cellular processes frequently altered in cancer, such as proliferation, cell growth, survival, and angiogenesis. AKT controls protein synthesis by regulating the multistep process of mRNA translation at every stage from ribosome biogenesis to translation initiation and elongation. Recent studies have highlighted the ability of oncogenic AKT to drive cellular transformation by altering gene expression at the translational level. Oncogenic AKT signalling leads to both global changes in protein synthesis as well as specific changes in the translation of select mRNAs. New and developing technologies are significantly advancing our ability to identify and functionally group these translationally controlled mRNAs into gene networks based on their modes of regulation. How oncogenic AKT activates ribosome biogenesis, translation initiation, and translational elongation to regulate these translational networks is an ongoing area of research. Currently, the majority of therapeutics targeting translational control are focused on blocking translation initiation through inhibition of eIF4E hyperactivity. However, it will be important to determine whether combined inhibition of ribosome biogenesis, translation initiation, and translation elongation can demonstrate improved therapeutic efficacy in tumours driven by oncogenic AKT.