One of the key components of a time-of-flight (TOF) spectrometer is the detection system. In addition to high timing resolution, accurate two-dimensional imaging substantially broadens the areas of applications of TOF spectrometers; for example, add a new dimension to angle-resolved photoemission spectroscopy (ARPES). In this paper we report on the recent developments of a high spatial (<50 mm) and timing (<130 ps) resolution imaging system capable of selective detection of electrons, ions and/or photons. Relative to our previously reported results, we have substantially improved the counting rate capabilities of the system especially for cases where the energy range of interest represents a small fraction of the incoming flux at the detector plane. The new system ignores all the events outside of a tunable time window substantially decreasing the dead time required for the event processing. That allows high-resolution TOF measurements within a given energy or momentum range and also can be used for distinguishing (or disabling) detection of photons versus detection of charged particles. The counting rate within a given energy window can be as high as ~;;400KHz at 10percent dead time. The electron detection system reported in the paper was developed for the TOF ARPES experiments at the Advanced Light Source, Lawrence Berkeley National Laboratory.