The use of remote sensing for forest inventory, fire management and wildlife habitat conservation planning has a decades-long and productive history in California. In the 1980s, mappers transitioned from aerial photography to digital remote sensing, in particular Landsat satellite imagery, which still plays a significant role in forest mapping, but today mappers increasingly rely on Lidar analysis. In California, where forests are complex and difficult to accurately map, numerous remote sensing scientists have pioneered development of methodologies for forest mapping with Lidar. Lidar has been used successfully here in a number of ways: to capture forest structure, to map individual trees in forests and critical wildlife habitat characteristics, to predict forest volume and biomass, to develop inputs for forest fire behavior modeling, and to map forest topography and infrastructure. Lidar can be costly to acquire and difficult to analyze, but as costs decline and new data processing methods are developed, it is likely that forest managers who need detailed information on forest structure across large spatial scales will incorporate Lidar data into their mapping toolkits.