Understanding how the brain extracts the behavioral meaning carried by specific vocalization types that can be emitted by various vocalizers and in different conditions is a central question in auditory research. This semantic categorization is a fundamental process required for acoustic communication and presupposes discriminative and invariance properties of the auditory system for conspecific vocalizations. Songbirds have been used extensively to study vocal learning, but the communicative function of all their vocalizations and their neural representation has yet to be examined. In our research, we first generated a library containing almost the entire zebra finch vocal repertoire and organized communication calls along 9 different categories based on their behavioral meaning. We then investigated the neural representations of these semantic categories in the primary and secondary auditory areas of 6 anesthetized zebra finches. To analyze how single units encode these call categories, we described neural responses in terms of their discrimination, selectivity and invariance properties. Quantitative measures for these neural properties were obtained using an optimal decoder based both on spike counts and spike patterns. Information theoretic metrics show that almost half of the single units encode semantic information. Neurons achieve higher discrimination of these semantic categories by being more selective and more invariant. These results demonstrate that computations necessary for semantic categorization of meaningful vocalizations are already present in the auditory cortex and emphasize the value of a neuro-ethological approach to understand vocal communication.