Objectives
The aim of this study was to assess the feasibility of quantifying shoulder cartilage morphology and relaxometry in a clinically feasible scan time comparing different pulse sequences and assessing their reproducibility at 3 Tesla.Methods
Three pulse sequences were compared for morphological assessments of shoulder cartilage thickness and volume (SPGR, MERGE, FIESTA), while a combined T1ρ-T2 sequence was optimized for relaxometry measurements. The shoulders of six healthy subjects were scanned twice with repositioning, and the cartilage was segmented and quantified. The degree of agreement between the three morphological sequences was assessed using Bland-Altman plots, while the morphological and relaxometry reproducibility were assessed with root-mean-square coefficients of variation (RMS-CVs) RESULTS: Bland-Altman plots indicated good levels of agreement between the morphological assessments of the three sequences. The reproducibility of morphological assessments yielded RMS-CVs between 4.0 and 17.7 %. All sequences correlated highly (R > 0.9) for morphologic assessments with no statistically significant differences. For relaxometry assessments of humeral cartilage, RMS-CVs of 6.4 and 10.6 % were found for T1ρ and T2, respectively.Conclusions
The assessment of both cartilage morphology and relaxometry is feasible in the shoulder with SPGR, humeral head, and T1ρ being the more reproducible morphological sequence, anatomic region, and quantitative sequence, respectively.Key points
• The thin cartilage morphology can be assessed in the shoulder in vivo. • Non-invasive biochemical assessment of shoulder cartilage is feasible in vivo using MRI.