Pooled analyses have suggested a small increased risk of childhood leukemia associated with distance and with exposure to high magnetic fields from power transmission lines. Because magnetic fields are correlated with distance from lines, the question of whether the risk is due to magnetic fields exposure or to some other factor associated with distance from lines is unresolved. We used data from a large records-based case-control study to examine several research questions formulated to disentangle the relationships among magnetic fields, distance from high voltage lines, and childhood leukemia risk. In models examining an interaction between distance and magnetic fields exposure, we found that neither close proximity to high voltage lines alone nor exposure to high calculated fields alone were associated with childhood leukemia risk. Rather, elevated risk was confined to the group that was both very close to high voltage lines (<50 m) and had high calculated fields (≥0.4 μT) (odds ratio 4.06, 95% CI 1.16, 14.3). Further, high calculated fields (≥0.4 μT) that were due solely to lower voltage lines (<200 kV) were not associated with elevated risk; rather, risk was confined to high fields attributable to high voltage lines. Whilst other explanations are possible, our findings argue against magnetic fields as a sole explanation for the association between distance and childhood leukemia and in favor of some other explanation linked to characteristics of power lines.