- D'Ambrosio, Vasil;
- Dore, Eleonora;
- Di Blasi, Roberto;
- van den Broek, Marcel;
- Sudarsan, Suresh;
- Horst, Jolanda Ter;
- Ambri, Francesca;
- Sommer, Morten OA;
- Rugbjerg, Peter;
- Keasling, Jay D;
- Mans, Robert;
- Jensen, Michael K
Engineering living cells for production of chemicals, enzymes and therapeutics can burden cells due to use of limited native co-factor availability and/or expression burdens, totalling a fitness deficit compared to parental cells encoded through long evolutionary trajectories to maximise fitness. Ultimately, this discrepancy puts a selective pressure against fitness-burdened engineered cells under prolonged bioprocesses, and potentially leads to complete eradication of high-performing engineered cells at the population level. Here we present the mutation landscapes of fitness-burdened yeast cells engineered for vanillin-β-glucoside production. Next, we design synthetic control circuits based on transcriptome analysis and biosensors responsive to vanillin-β-glucoside pathway intermediates in order to stabilize vanillin-β-glucoside production over ~55 generations in sequential passage experiments. Furthermore, using biosensors with two different modes of action we identify control circuits linking vanillin-β-glucoside pathway flux to various essential cellular functions, and demonstrate control circuits robustness and almost 2-fold higher vanillin-β-glucoside production, including 5-fold increase in total vanillin-β-glucoside pathway metabolite accumulation, in a fed-batch fermentation compared to vanillin-β-glucoside producing cells without control circuits.