A modulation-doping approach to control the carrier density of the high-density electron gas at a prototype polar/non-polar oxide interface is presented. It is shown that the carrier density of the electron gas at a GdTiO3/SrTiO3 interface can be reduced by up to 20% from its maximum value (~3 × 1014 cm−2) by alloying the GdTiO3 layer with Sr. The Seebeck coefficient of the two-dimensional electron gas increases concurrently with the decrease in its carrier density. The experimental results provide insight into the origin of charge carriers at oxide interfaces exhibiting a polar discontinuity.