- Ravindran, Resmi;
- Kang, Harsharonjit;
- McReynolds, Cindy;
- Sanghar, Gursharan Kaur;
- Chang, WL William;
- Ramasamy, Santhamani;
- Kolloli, Afsal;
- Kumar, Ranjeet;
- Subbian, Selvakumar;
- Hammock, Bruce D;
- Hartigan-O’Connor, Dennis J;
- Ikram, Aamer;
- Haczku, Angela;
- Khan, Imran H
- Editor(s): Canderan, Glenda
We assessed the humoral immune responses to a COVID-19 vaccine in a well-controlled rhesus macaque model compared to humans immunized with two mRNA vaccines over several months post-second dose. The plasma IgG levels against seven coronaviruses (including SARS-CoV-2) and antibody subtypes (IgG 1-4 and IgM) against SARS-CoV-2 were evaluated using multiplex assays. The neutralization capacity of plasma antibodies against the original SAR-CoV-2 isolate and nine variants was evaluated in vaccinated humans and non-human primates. Immunization of macaques and humans with SARS-CoV-2 vaccines induced a robust neutralizing antibody response. In non-SIV-infected adult macaques immunized with an adenoviral vector expressing S-RBD (n = 7) or N protein (n = 3), elevated levels of IgG and neutralizing antibodies were detected 2 weeks post-second dose. Immune responses to the S-RBD vaccine in SIV-infected adult macaques (n = 2) were similar to the non-SIV-infected animals. Adult humans immunized with Pfizer (n = 35) or Moderna (n = 18) vaccines developed IgG and neutralizing antibodies at 4 weeks post-second dose. In both vaccine groups, IgG 1 was the predominant subtype, followed by IgG 3. The IgG levels, including total and IgG 1,2,3 elicited by the Moderna vaccine, were significantly higher than the corresponding levels elicited by the Pfizer vaccine at 4 weeks post-second dose. A significant correlation was observed between the plasma total IgG antibody levels and neutralization titers in both macaques and humans. Furthermore, broad-spectrum neutralization antibodies against several variants of SARS-CoV-2 were detected in the plasma of both macaques and humans after two vaccinations.