Does the human mind contain a task-general ‘randomization machine’? Stable biases of randomization have been identified that span multiple domains and modalities, in both lower-level perceptual tasks and in higher-level cognitive tasks. The stability of such biases indicates that the mind may rely on a stable set of properties to create and perceive randomness. But what computational principles support randomization? Here, we approach this question by building a computational model of human randomization that generalizes across spatial and numerical tasks. We show that simple computational heuristics capture higher-order properties of human-generated random sequences, in both numerical and spatial randomization tasks each with many possible options. Furthermore, we show that human behavior in both types of tasks can be approximated by the same low-dimensional model, implying that a domain-general set of computational principles may underlie randomization behavior in general.