Incremental determinization is a recently proposed algorithm for solving quantified Boolean formulas with one quantifier alternation. In this paper, we formalize incremental determinization as a set of inference rules to help understand the design space of similar algorithms. We then present additional inference rules that extend incremental determinization in two ways. The first extension integrates the popular CEGAR principle and the second extension allows us to analyze different cases in isolation. The experimental evaluation demonstrates that the extensions significantly improve the performance.