The magnetoresistive properties of La0.7Ca0.3MnO3 change rapidly when Ti or Ga are substituted on the Mn site for concentrations, x, from 1 to 10 percent. The samples exhibit colossal magnetoresistance (CMR) and the resistivity increases dramatically with dopant concentration. The temperature of the resistivity peak, TR, shifts rapidly to lower temperatures with increasing x and the ferromagnetic transition broadens. However, the transition temperature, Tc, is only slightly suppressed. Consequently, TR occurs well below Tc for x above 2 percent. Investigations of these materials using Mn XAFS show that changes in the local structure, parametrized by the pair-distribution width, sigma, correlate well with Tc and the sample magnetization. For a given dopant, the resistivity peak occurs when sigma^2 decreases below a critical value. Both dopants produce extended defects which increases the resistivity of the nearby materials considerably. The data suggest that even at x~;4 percent, most of the sites are slightly distorted at low T.