Previous studies in HIV patients have reported autoantibodies to several human proteins, including erythropoietin (EPO), interferon-α (IFN-α), interleukin-2 (IL-2), and HLA-DR, as potential mediators of anemia or immunosuppression. The etiology of these autoantibodies has been attributed to molecular mimicry between HIV epitopes and self-proteins. Here, the Luciferase Immunoprecipitation System (LIPS) was used to investigate the presence of such autoantibodies in HIV-infected adults. High levels of antibodies to HIV proteins such as capsid (p24), matrix (p17), envelope (gp41), and reverse transcriptase (RT) were detected using LIPS in both untreated and anti-retroviral-treated HIV-infected individuals but not in uninfected controls. LIPS readily detected anti-EPO autoantibodies in serum samples from subjects with presumptive pure red cell aplasia but not in any of the samples from HIV-infected or uninfected individuals. Similarly, subjects with HIV lacked autoantibodies to IFN-α, IL-2, HLA-DR and the immunoglobulin lambda light chain; all purported targets of molecular mimicry. While molecular mimicry between pathogen proteins and self-proteins is a commonly proposed mechanism for autoantibody production, the findings presented here indicate such a process is not common in HIV disease.