Background
There is an increasing demand for renewable resources to replace fossil fuels. However, different applications such as the production of secondary biofuels or combustion for energy production require different wood properties. Therefore, high-throughput methods are needed for rapid screening of wood in large scale samples, e.g., to evaluate the outcome of tree breeding or genetic engineering. In this study, we investigated the intra-specific variability of lignin and energy contents in extractive-free wood of hybrid poplar progenies (Populus trichocarpa × deltoides) and tested if the range was sufficient for the development of quantitative prediction models based on Fourier transform infrared spectroscopy (FTIR). Since lignin is a major energy-bearing compound, we expected that the energy content of wood would be positively correlated with the lignin content.Results
Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260 to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR) unit to measured values of lignin or energy contents. The best models with high coefficients of determination (R2 (calibration) = 0.91 and 0.90; R2 (cross-validation) = 0.81 and 0.79) and low root mean square errors of cross validation (RMSECV = 0.77% and 62 J g-1) for lignin and energy determination, respectively, were obtained after data pre-processing and automatic wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively.Conclusions
These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin and energy estimations in large data sets. Our study revealed that the intra-specific variations in lignin and energy contents were unrelated to each other and that the lignin content, therefore, was no predictor of the energy content. Employing principle component analyses we showed that factor loadings for the energy content were mainly associated with carbohydrate ring vibrations, whereas those for lignin were mainly related to aromatic compounds. Therefore, our analysis suggests that it may be possible to optimize the energy content of trees without concomitant increase in lignin.