The complexes of first-row transition metals can undergo elementary reactions by multiple pathways due to their propensity to undergo both one- and two-electron redox steps. Classic and recent studies of the oxidative addition of aryl halides to Ni(0)-a common step in widely practised cross-coupling processes-have yielded contradictory conclusions about stepwise, radical versus concerted mechanisms, but such information is crucial to the design of catalysts based on earth-abundant metals. Here we show that the oxidative addition of aryl halides to Ni(0) ligated by monophosphines occurs by both mechanisms and delineate how the branching of radical and non-radical pathways depends on the electronic properties of both the ligand and reactant arene as well as the identity of the halide. The one-electron pathway occurs by outer-sphere electron transfer to form an aryl radical rather than the often-proposed halogen atom transfer.