Vegetative growth and water relations of Thompson Seedless grapevines in response to applied water amounts at various fractions of measured grapevine ETc were quantified. Treatments ranged from no applied water up to 1.4 times the water used by vines growing in a weighing lysimeter. All treatments were irrigated at the same frequency as the vines in the lysimeter (whenever they used 2 mm of water), albeit at their respective fraction. Soil water content and midday leaf water potential (Ψl) were measured routinely in four of the irrigation treatments across years. The amount of water depleted in the soil profile ranged from 190 mm for the 0.2 treatment in 1993 to no water depletion for the 1.4 treatment in 1992. The irrigation treatments significantly affected midday Ψl, total shoot length, leaf area per vine, pruning weights and trunk diameter; as applied water decreased so did vegetative growth. Pruning weights were a linear function of the seasonal, mean midday Ψl across growing seasons. The application of water amounts in excess of evapotranspiration negatively affected vegetative growth some of the years. A companion paper will demonstrate that over-irrigation can negatively affect reproductive growth of this grape cultivar due to excess vegetative growth.