Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and
morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant
software, a commercially available video bioinformatics tool, can be used to extract quantitative data on:
(1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and
(4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and
colonies. Time-lapse experiments in which different cell types were subjected to various chemical
exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem
cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels).
Colony and single cell migration were studied by measuring total displacement (distance between the
starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production,
cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with
various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural
stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected
daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant
software can be used to evaluate biological processes in living cells, and the protocols developed in
this project can be applied to basic research and toxicological studies, or to monitor quality control in
culture facilities.