Identification of proteoforms, the different forms of a protein, is important to understand biological processes. A proteoform family is the set of different proteoforms from the same gene. We previously developed the software program Proteoform Suite, which constructs proteoform families and identifies proteoforms by intact-mass analysis. Here, we have applied this approach to top-down proteomic data acquired at the National High Magnetic Field Laboratory 21 tesla Fourier transform ion cyclotron resonance mass spectrometer (data available on the MassIVE platform with identifier MSV000085978). We explored the ability to construct proteoform families and identify proteoforms from the high mass accuracy data that this instrument provides for a complex cell lysate sample from the MCF-7 human breast cancer cell line. There were 2830 observed experimental proteforms, of which 932 were identified, 44 were ambiguous, and 1854 were unidentified. Of the 932 unique identified proteoforms, 766 were identified by top-down MS2 analysis at 1% false discovery rate (FDR) using TDPortal, and 166 were additional intact-mass identifications (∼4.7% calculated global FDR) made using Proteoform Suite. We recently published a proteoform level schema to represent ambiguity in proteoform identifications. We implemented this proteoform level classification in Proteoform Suite for intact-mass identifications, which enables users to determine the ambiguity levels and sources of ambiguity for each intact-mass proteoform identification.